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ABSTRACT

An error probability analysis is done for a DFT based, M-ary frequency-shift

keying (MFSK) communications system employing fast frequency-hopped spread

spectrum signals. A linear combination procedure referred to as noise-normalization is

employed at the receiver to minimize the effects of partial-band interference, which is

modeled as additive Gaussian noise. The performance of the receiver is studied as a

function of signal Doppler shift and type of windowing function used in the DFT.

The use of fast frequency-hopped spread spectrum is found to improve the

performance of the DFT based receiver in all but the most severe cases of Doppler shift.

The use of a non-uniform window (i.e., a Hamming window) to improve receiver

performance is effective only in the presence of large Doppler shifts. The amount of

Doppler shift necessary to warrant the use of a non-uniform window depends on the

amount of jamming noise power at the receiver, but is relatively insensitive to the

frequency-hop rate used. In general, in the absence of any information concerning the

nature of the received signal, a non-uniform window should be used because the

performance degradation experienced at small Doppler shifts is insignificant compared

to the performance enhancement gained at large Doppler shifts.
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I. INTRODUCTION

A. NON-UNIFORM WINDOWING OF THE DISCRETE FOURIER TRANSFORM

The use of the discrete Fourier transform (DFT) to

noncoherently detect signals employing M-ary frequency-shift

keying (MFSK) modulation has gained popularity recently due to

advances made in high speed digital systems. At the current

level of technology, however, the utility of the DFT based

receiver remains limited due to the speed of real-time DFT

algorithms. Even the performance enhancement obtained by using

the fast Fourier transform (FFT) is not sufficient to overcome

this limitation. However, certain applications - namely fast

frequency-hopped spread spectrum systems - can effectively

utilize the DFT receiver because lower data rates frequently

correspond to higher immunity to narrowband interference.

[Ref. l:p. 2014]

Problems arise in using the DFT based receiver if the

transmitted frequency does not match the assigned frequency of

the DFT bin. This situation results when the signal frequency

is different than that required by the detector, as when the

signal experiences a Doppler shift prior to detection. This

leads to a situation where transmitted signal energy falsely

contributes to an incorrect DFT frequency sample: a phenomena

known as self-induced crosstalk [Ref. 1:p. 2015]. This problem
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is not specific to the DFT based receiver. What is unique

about this type of receiver is its ability to minimize self-

induced crosstalk through the use of non-uniform windows. An

example of a DFT based detector experiencing self-induced

crosstalk is presented in Fig. 1.1. Figure 1.1(a) depicts the

situation where the received frequency is perfectly matched to

the first output bin of the detector, while Fig. 1.1(b) shows

the results of slightly modifying the received signal's

frequency. As can be seen, the magnitude of the bin

corresponding to the signal is reduced, while the magnitudes

of neighboring bins which represent other frequencies are

significantly larger. Large amounts of frequency deviation can

easily lead to unacceptable bit error rates.

One method that is used to minimize the effects of self-

induced crosstalk involves the use of nonuniform windowing;

that is, time-sampled data is not equally weighted. The

frequency response of typical nonuniform windows have broader

main lobes than do rectangular windows (uniform weighting) but

exhibit sharper rolloff characteristics. The sharp rolloff

characteristics of nonuniform windows partially compensate for

tre effects of self-induced crosstalk, but in some cases the

existence of a broader main lobe creates distortion where it

would not otherwise exist [Ref. 1:p. 2015]. Nonetheless,

nonuniform windowing can be used successfully to combat large

doppler shifts in low data rate environments as demonstrated

in [1] and [2].
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Figure 1.1: Outputs of a DFT (a) without a doppler shifted
signal, and (b) with a doppler shifted signal. The adverse
effects of a doppler shifted signal can severely degrade
communications.

B. FACTORS AFFECTING RECEIVER PERFORMANCE

1. Fast Frequency-Hopping and Partial-Band Interference

When the carrier of the transmitted frequency is

changed in an apparently random manner during the transmission

of a signal, the overall effect is to spread the energy of the

signal over a large bandwidth. This spreading technique is

called frequency-hopping and is illustrated in Fig. 1.2. Two

types of frequency-hopping are considered: fast and slow

frequency-hopping. Slow frequency-hopping systems change, or

3



hop, the carrier once per data symbol, while fast frequency-

hopping systems hop the carrier more than once per data

symbol. The higher the hopping rate, the more the frequency

spectrum approximates that of true spread spectrum systems

utilizing pseudonoise (PN) codes [Ref. 3: pp. 10-14].

0

Time

Figure 1.2: An example of hopping the cafrier frequency of
a signal.

The intent of a hostile jammer is to disrupt

communications. In order to effectively jam a frequency-hopped

signal, a smart jar.,aer may employ partial-band interference;

although, this type of interference can also be caused by

other unintended narrowband sources. In utilizing partial-band

interference, the jammer concentrates all of the jamming

4



energy into a fraction of the total bandwidth and randomly

hops this signal through the spectrum in the same fashion as

the signal employing frequency-hopping. By doing this, the

frequency hopped signal cannot always avoid the portion of the

spectrum that is jammed; the jammer must be dealt with via the

receiver.

The assumptions involved in the analysis to follow are

that the jammer is limited in power; that the interference can

be modeled as additive Gaussian noise; and that the

interference, when present, is present in all detection

channels with probability y. Hence, the probability that

interference is not present in any branch is l-y. Thus, y

represents the fraction of the spread bandwidth that is

jammed. If the partial-band interference is assumed to have a

power spectral density of N /2 over the entire spread

bandwidth, the amount of interference present at the receiver

due to partial-band interference is y-'N./2 with probability y

and 0 with probability 1-y. [Ref. 4:p. 3]

In addition to partial-band interference, the system is

assumed to be corrupted by additive white Gaussian noise with

a power spectral density of No/2. Accordingly, the power

spectral density of the total noise at the receiver input is

N0/2+y-N /2 with probability y and N0/2 with probability l-y.

If the receiver equivalent noise bandwidth is W Hz, then the

total noise power at the receiver is NOW with probability 1-y

and is (y-N No)W with probability y. [Ref. 4:p. 3]
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2. Fading

In addition to partial-band interference, the

signal is assumed to be further degraded by fading. Fading is

caused by comporents of the signal arriving over different

paths which combine to form the total detected signal. Due to

the different path lengths traversed by the various signal

components, the combined signal amplitude may be greater than

or less than the expected amplitude without fading due to

constructive and destructive interference. Fading severely

degrades the performance of a real world communications system

and must be taken into account in any plausible receiver

design and analysis.

For this analysis, the signal is assumed to experience

slow, frequency non-selective, Rician fading. Slow fading

refers to the fact that the amplitude of the signal is assumed

to remain constant at least over the duration of one hop,

while frequency non-selective implies that all frequency

components of the signal experience identical fading. Rician

fading is characterized as having a diffuse signal component

and a direct signal component. Assumme that the amplitude of

the received signal in a Rician fading channel is aV2. Then

the probabilty density function of the random variable A is

given by

a a

fA(a)= a e o/ o( a___EF ) u(a), (1)
f 0 f

6



where u(.) is the unit step function, r2 is the power in the

direct component of the signal, 2of2 is the power in the

diffuse component, and Io(.) is the modified Bessel function

of order zero. As can be seen, (1) reduces to the well known

Rayleigh distribution when the value of the direct component

is zero. [Ref. 5]

C. THE NOISE-NORMALIZED DETECTOR

A noise-normalized detector is a linear receiver that uses

the received noise power to normalize the output of each

branch before a decision is made regarding which signal is

present. This type of receiver is combined with fast frequency

hopping to improve overall system immunity to partial-band

interference. The noise-normalization is implemented before

the hop receptions are combined to form the detection

statistics. This type of detection scheme tends to lessen the

influence on the overall decision statistic of each hop when

interference is present, while increasing the influence of

each hop when no interference exists [Ref. 4:p. 2]. Because

the output statistics of each branch of the receiver are

independent of one another, closed form solutions for the

i ceiver performance can be obtained.

This thesis studies the effects of nonuniform

windowing on a noise-normalized DFT based receiver where the

signal experiences partial-band interference, Doppler shift,

and Rician fading. The effects of fast-frequency hopping the

7



carrier frequency are analyzed and the results for various hop

rates discussed. As in [1] and [2], a statistical analysis is

done to determine the amount of frequency deviation necessary

to warrant the use of a nonuniform window over a rectangular

window.

8



II. ANALYSIS OF THE NOISE-NORMALIZED DFT BASED DETECTOR

The receiver under consideration is shown in Fig. 2.1. The

incoming signal hop is first brought back to baseband and then

sampled at the Nyquist rate. The DFT of the signal is computed

using the appropriate windowing function and the magnitude of

each output bin is squared. Hence, in the absence of both a

Doppler shift and a nonuniform window, this receiver is

functionally equivalent to a conventional MFSK receiver

employing quadratic detectors. At the same time, the total

noise power at the receiver is measured, modified

appropriately by the windowing function of choice, and

inverted to form the noise-normalization term. Each bin output

is multiplied by the noise-normalization term. The decision

statistics are then obtained by summing over all hops

comprising the transmitted symbol. Finally, the detection

statistics are compared and the largest one used to determine

the estimate of the symbol sent. Errors result when the

detection statistic in a channel with no signal is greater

than the detection statistic of the signal channel. A detailed

analysis of each part of this design follows.

9
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Figure 2.1: The DFT based noise-normalized receiver.
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A. DETERMINATION OF THE PROBABILITY DENSITY FUNCTION FOR EACH

DFT OUTPUT BIN

The signal input to the receiver in Fig. 2.1 every Th

seconds is of the form

r(t) =avfcos [2n (fc+fm+f') t] +n'(t) (2)

where O<t<Th, a is a Rician random variable having the

probability density function of (1), aV2 is the Rician

distributed signal amplitude, f. is the carrier frequency

hopped every Th seconds, fm is the intended symbol frequency,

f, is a Doppler shift, and n'(t) is zero mean, additive

Gaussian noise. The signal frequencies are chosen to be

orthogonal during the time interval O<t<Th and are obtained

using the relation

f ,: 1 +, M/ 1 (3)

where m'=1,2,..,M and 4f is an integer representing the

spacing between each of the M signals. To simplify the signal

representation, the following substitutions are made:

qAl +Af (m'-l) (4)

and

Af'Th (5)

so that after the low-pass filter (2) becomes

11



r'( t) =avF/cos[ 2n (q+e) t I +n(t), (6)Th

where E is the fraction of Doppler shift with respect to the

bandwidth of the baseband information signal, q is an integer

related to the signal frequency fm", and n(t) is the filtered

noise. The discrete form of the received signal is obtained by

using a sampling rate of NITh, where N is the number of

samples taken during the symbol reception:

r(p) =aV2cos[ 2% (q+,e)p] +n(p) , (7)
N

where p=0,1,..,N-l and is the discrete signal sample. [Ref.

2:pp. 7-9]

The output of each bin is a complex quantity and can be

separated into real and imaginary parts:

Ym(k a) =YR(kIa) +j Y (kla) , (8)

where k, which ranges from 0 to N-I, is an integer

representing the DFT output bin and Ym(kla), YR.(kla), and

Y1m(kla) are respectively the DFT output, the real part of the

DFT output, and the imaginary part of the DFT output for

channel k and frequency hop m conditioned on the Rician

distributed random variable a. The real and imaginary parts of

the DFT are calculated separately

12



Y,(kla) =.p= r(p)w(p)cos[ 2kp]=ON (9)

=p-' [Wacos[ 2 p (q+)P]+n(p) ]w(p)cos[ 27rkp]
=0 N N

and

YI, (kla = r (p) w(p) sin [ 21rkp]

N (10)
=Ep-1 [v'2acos[ 2ir(q+e)p] +n(p) ] w(p) sin[ 2,kp

=0 N N

where w(p) represents the windowing function. Assuming slow

Rician fading so that the amplitude of the signal remains

constant during each hop interval, the conditional probability

density function for the random variable Xkm is

(Xk 2 4 ,)
(XM Pj=)

fx "1.4(xk Ia) = -X o °( xk ) (11)

x2  Ox2

where Xk, is the magnitude of bin k and hop m given by

Xk =iY,(kIa) (12)
= Yp, (kj a) 2 + Yj,,,(k a) 2,

Pkm is the magnitude of the expected value of bin k and

frequency hop m given by

= I1 2+ 1a 2  (13)=Yp (k aI a+ yl,(ka),

and O2 is the variance of bin k given by

ax2=l E [IY (kI a) -Y7TTh1 2] (14)

[Ref. 1:p. 2016]
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The mean of Xk,, for a fixed amplitude a is easily

determined by observing that the only random quantity is n(p)

which is zero-mean. This leads to the conclusion that the mean

is simply the output of the DFT without noise. The real and

imaginary parts of the mean conditioned on a are

21tp(q+e) 2p )
p=C N N (15)

&mR

and

12 irp (q~e) ____P

Yjjk7 T=a2- w(p)cos( N )sin( 2rkN N (16)
aml,

An expression for Pkm
2 conditioned on a is then determined by

substituting (15) and (16) into (13) and squaring both sides:

2 2r 2 2( 7
= mR+mI

=a R+ II
A a2 Pk

where Bkyr is the magnitude squared of the mean of the DFT

output without fading when the signal power is normalized to

unity, that is,

Okm=2 ( [- 1 w(p)cos( 2-np(q+ e) ) 27rpk 2
N N (18)

+[ N-1 Cos ( 2 np (q+ c)sin (  21p )3]2)
p=o N N

[Ref. 2:pp. 10-11]

The variance of Xkm is obtained by substituting (9), (10),

(15), and (16) into (14) and simplifying

14



O YE[IY,(kIa) - kTaT +j (Yl (k a)- Yx,(kla) ) 12]

2

=E[ l w(p) n(p) cos ( 2Tkp) (19)

+j I w(p) n(p) sin ( N

The magnitude squared of (19) becomes

a.2= E[ ( w(p) n(p)cos( ) 2

+(V - w(p) n(p)sin( 2ckp) )2]Y N (20)

=E L '-! w(p) W(S) Cos ( 21rkP) cos (2-ks)n(p) n(s)= N N

w(p) w(s) sin (2kp )sin( 2k
N N

where s is an integer having the same range of values as p.

Because the expected value operator is a linear operator and

the only random quantities are the noise functions, (20)

simplifies to

2 71 kp
a = i-I 1 w(p) w(s) cos (

2itks

cos( --k ) E [n (p) n (s) ] N 2(21)

+ w(p) w(s) sin ( 2kp)
2 p=0 N
sin ( 2nks) n(pn(s-i(itk)E[n(p)n(s)],

N

The autocorrelation function is defined as

Rrn (p, s) =E [n (P) n (s) ],(22)

which, because the noise functions represent white noise, is

Rnn (p, q) =WN t8 (p-s) ,(23)

where 6(.) is the Dirac delta function, W represents the

equivalent noise bandwidth of the low-pass filter at the front

15



of the receiver, and Nt is the power spectral density of the

total noise seen at the receiver [Ref. 4]. The quantity Nt

equals either No when jamming is not present or No+N,/y when

jamming is present. The expected value needed to solve (21) is

obtained by substituting (23) into (22):

E[n(p)n(s)] =WN,6(p-s) . (24)

The final expression for the variance of Xkm is obtained

by substituting (24) into (21) and simplifying:

2°N = W(P) w(S) Cos ( 2Trkp)cos( 2Tks (ps

+ w(p) w(s) sin( 2,kp ) 2sin( 2 Tks )(p-s)
2 =0 =0 N N (25)

WN -wI W2(p) [cos2 ( 2iTkp . 2 2nkp)]
2 =0 N N

2 =

The variance in each bin is affected by both the power

spectral density of the external noise and the choice of

windowing function used in the DFT.

The probability density function for the output of each

bin is found by substituting (17) into (11) and integrating

over the range of the Rician distributed amplitude:

16



(x,)=L fX!(x.!a) fA (a) da

= .xkm e 2 0o2 io ( a xk/l )
JO Ox 2  

aOx
2

a e 2 a,2 I ( a-- - ) da ( 6
o o2 a f2(x xx _F

X2 r

- Xkm e2 2 at
2

0x20f2

fae 2o 2 2.,2 I° (axk o., )1 0 a) da.
Ox Of

By making the substitutions Io(x)=Jo(jx), and by defining

20 1 k.__._ + 1.7 _
2 x 2 2 f 2

O2 2O 2 (27)

2cJx2 o f2

and using the integral (from [7])

.2_L
2

- - ) ab (8

Jxe- J,(ax)J, (bx)dx= 1 e 4 2 I v ( 2 )  (28)
T2o 2  2Q2

the probability density function is

f x,(Xk) Xk , e 2 0a2 2

S2 C)"x-"of (29)

e 402 CX4 If4 i0 ( ) .V
2Q2ox20f

The next step involves substituting (27) into (29) which gives

17



( Xkrln ) 2020 2 2 
2
t(m to3 f 2+Ox2+ 

(30)
z0 ( F

jk.O f 2 +ox
2

Equation (30) simplifies to

1 ( i*L -
k 2 ( 2 2+.x2 X~JIYV (31)XJ0.(Xk,) = m fx +a e Io ( ) .

k~ f + x 2  _ Gfl + Cx 2

In order to clarify the notation, the following substitutions

are made:

okmg A 3k"of 2 +Gx2, (32)

and

akmarO . (33)

With these substitutions, (31) is seen to be Rician

distributed

- (Xh,
2
, +a 

2 
)

f x (XM)= Xkm 20°'2 Xka km (34)

and reduces to the result obtained in [1] for the case of a

nonfading channel (2af2=0 and P'=1). [Ref. 2 :pp. 11-12]

18



B. ANALYSIS OF THE NOISE-NORMALITED RECEIVER

1. Determination of the Probability Density Function for

the Detection Statistic

As illustrated in Fig. 2.1, the random variable Zkm is

given by

Xk_2  (35)
ax

where Zkm is the random variable for bin k and frequency hop

m. Because all the random variables Xkm are independent, the

transformation of random variables is accomplished by using

the relation (from [8])

fx'(Xk(o))

where

Zk,=g(x,), (37)

g,(xkM) is the derivative of g(x)km with respext to Xkm, and

Xkm ) is the real root of (35). The denominator in (36) is

found by substituting (35) into (37) and differentiating:

19



g/~~~~ (x~~) xk.()
ax2 

(38)

=2 O

The transformation of random variables for the noise-

normalized detection statistic is determined by substituting

(38) into (36):

_1 Xf ((39)
2 k"

The probability density function of Zkm is obtained by

substituting (34) into (39):

2(Gx2ZkI+akM)

22 (40)2 -e kin

The actual detection statistic needed for the

comparison is Zk, which is defined as

Zk=E =l Zk., (41)

where L is the number of frequency hops per symbol. Since some

hops are jammed while others are not, the probability density

function of Zk conditioned on the number of jammed hops is

simply the multiple convolution of the probability density

functions of the jammed and unjammed hops. For instance, if a

symbol has three hops and two of them are jammed, the

20



probability density function of the detection statistic is

determined as follows:

fz(z k) = fz' (Zkl) -2 a ede f (zk2) j , (Zk3) ja ed, (42)

where o represents convolution. In general, the probability

density function of Zk conditioned on 1 out of L hops jammed

is

f k) [fz (z )aed]®1 [fz) km ( zm) ni ]® L1 (43)

where ocn represents a cn-fold convolution. [Ref. 4:p. 7]

2. Determining the Probability of Bit Error

Once the random variable transformation is

accomplished, the next step involves calculating the

probability of bit error. An error will occur if the power in

a channel other than the signal channel is greater than the

power in the signal channel. Mathematically, this is expressed

as

Pr (Z,.KZ4= =f(zq)f 7 ~fz(z )dzdz. (44)

where i,j=l,...,M and isj; and the signal is assumed to be in

branch i.[Ref. 4: p. 7]. The double integral in (44)

determines the probability that the power present in the

signal channel is less than the power present in a noise

channel.
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Because the distribution of power in each noise

channel is not identical when Doppler shift is present, the

comparison in (44) must be carried out for each noise channel

and the results combined to give the total probability of

error. An upprr bound to the total conditional probability of

error is found using the union bound:

PSiil!E =, Pr(Zi<Zj). (45)

where PsiL is the probability of symbol error given 1 hops are

jammed with the signal present in channel i. [Ref. l:p. 2017]

Because the distribution of power in each bin varies

with the location of the signal, the amount of Doppler, and

the relative direction of the frequency shift, an average must

be taken over all signal channels and direction of Doppler

shift:

Psi (C)=--A Psi, (+C) +Psi (-e), (46)

where PsL(E) is the total probability of symbol error given 1

hops are jammed conditioned on the signal experiencing a

Doppler shift of e and PsiL(.) is the probability of symbol

error given 1 hops are jammed with the signal present in

channel i conditioned on the signal experiencing a Doppler

shift of (+e) or (-e). The union bound on the conditional

probability of symbol error is calculated by combining (45)

and (46):
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PSI£) -2M I : [Pr (Z < Zj I+e) +Pr (Zi <Zj -)]. (47)

The total conditional probability of symbol error assuming 1

hops are jammed is calculated by combining (44) with (47):

Ps1 () f ze(z W +e) J~~fz (z1 +e) dz, dz,(8

[Ref. 1:p. 2017]

The total probability of symbol error for the noise-

normalizing receiver in the presence of partial-band

interference is

where Ps(c) is the total probability of symbol error [Ref.

4:p. 6]. To determine the worst case probability of symbol

error, (49) is evaluated for different values of y, the

results compared, and the highest conditional probability of

symbol error recorded. The worst case probability of bit error

is:

Pb(e)= M/2 Ps(e), (50)

M-1

where Pb(E) is the probability of bit error.

An exact solution for the conditional probability of

symbol error is calculated by evaluating the probability of

not making an error (i.e., the probability that the power in
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all noise channels is less than the power in a signal

channel):

Pr (Zi< Z!) = 'f z (zi) f(! fzzj (zj) dzjdz i . (51)

The total conditional probability of not making an error is

found by the following relation:

PSI I T7=7=l Pr(Z <Zie)
J*1 (52)

=1 f0 ,. (z1 le) Lz'ifz, (zj le) dz dz1,

where PsiL(E) is the probability of not making an error given

that the signal in channel i with 1 hops jammed and the signal

experiencing a Doppler shift of E. The probability of making

an error given that the signal is in channel i with 1 hops

jammed is then given by

Psil(e)=1-Psil(e) . (53)

which is then used in (46), (47), (48), (49), and (50) to

obtain the exact probability of bit error. Due to the enormous

amount of computing power needed to numerically integrate (51)

and the desire to compare the results with those obtained in

[1] and [2], the conditional probability of error based on the

union bound was chosen for this thesis.
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III. NUMERICAL PROCEDURE

A. PARAMETERIZATION OF VARIABLES

In order to compare the performance of the noise-

normalizing receiver with a conventional DFT/MFSK receiver,

the number of points used in the DFT, the cut-off frequency of

the low pass filter, and the spacing between the M signals are

chosen to be consistent with those used in [1] and [2]. The

following definitions result from adopting these conventions:

NA4M, (54)

W&2M, (55)

and

Af&2, (56)

where N is the number of signal samples per hop, M is the

modulation order, W is the effective noise bandwidth, and Af

is an integer representing the message frequency spacing.

A hop time, Th, of one second results from sampling the

received signal at the Nyquist rate. When this value of Th and

(56) are substituted into (3), it is determined that fm

consists only of odd values ranging from 1 to 2M-1.

Furthermore, the spacing of frequencies in the DFT is
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N

4M (57)
4M

= iHz,

where Af is the frequency resolution of the DFT [Ref. 9].

Because of these choices one empty bin exists between each

possible DFT signal output.

A parameter of concern is the energy-per-bit to thermal

noise power spectral density ratio defined as Eb/No, where Eb

is the transmitted energy per bit. The signal-to-noise ratio,

which is a measure of the ratio of signal power to noise

power, is defined as

SNRA r2+2of2 (58)
NoW

For an M-ary system, symbols are sent instead of bits. The

power per symbol is the sum of the power in the direct

component and the power in the diffuse component:

E,=(2Cyf2+r2)T.,  (59)

where Es is the transmitted energy per symbol and Ts is the

symbol duration time related to the hop duration time by

T=LTh. (60)

The energy-per-symbol is related to the energy-per-bit by
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Es=Eblog' 2 (M). (61)

All the variables used in this thesis are expressed as per-bit

quantities; therefore, a relationship between the energy-per-

hop and the energy-per-bit is needed. Because each symbol is

comprised of L bits,

Eh= s (62)
L

where Eh is the energy-per-hop. A relationship between the

energy-per-bit to noise power spectral density ratio and the

signal-to-noise ratio is obtained by combining (58) with (59)

Eb- WT. SNR. (63)

NO log2 (M)

Proper choice of the symbol duration time (i.e., Ts=l) and the

equivalent noise bandwidth (i.e., W=log2(M)) gives EbINO=SNR.

In general, however, these two ratios are not equal and must

be kept separate in the receiver analysis.

An expression relating the energy-per-bit to noise power

spectral density ratio to the signal-to-noise ratio is

obtained by combining (58), (60), and (63) and simplifying:

Eb (W (L) (Th) rz+2f 2  (64)
N log 2 (M) NoW

For the case of a receiver operating in a jammed environment,

No is replaced with No+N /y when the hop is jammed and (64)

becomes
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E1 r 2 +2o 2  (W) (L) (Th)  (65)
No 1+N/(yN0 ) W(NO +N.N/Y) log2 (M)

The relationship between the energy-per-bit to noise power

spectral density and the signal-to-noise ratio is a function

of the effective noise bandwidth of the system, the number of

frequency hops per symbol, the hop duration time, and the

level of M-ary signalling used.

Another parameter for analysis is the direct to diffuse

ratio

DTD& r (66)
2a/ 2

The following expressions for the direct and the diffuse

signal power components result from combining (65) and (66)

and simplifying:

0 - Eh (67)
2 (1 +DTD) Th

and

r2= Eh ( DTD (68)
Th 1 +DTD

In doing this analysis, the values of Eb/NO, N /No, y,, W, T,,

and DTD are assumed and used to determine the values of F2 and

2
of
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B. CONVOLUTING THE PROBABILITY DENSITY FUNCTIONS

In the case of fast frequency-hopping, the probability

density function of the total detection statistic is the L-

fold convolution of the probability density functions of the

detection statistic of each hop. As shown in (49), the total

probability of error represents all possible combinations of

jammed and unjammed hops. Based on this, a total of 2M(L+l) L-

fold convolutions are required for each possible signal branch

and for each combination of jamming power and fraction of

bandwidth jammed that are studied. These convolutions are not

required in the case of slow hopping because the total

detection statistic is equal to the detection statistic of the

single hop. These multiple convolutions are generated by

taking advantage of the properties of the Laplace transform.

The Laplace transform of the probability density function

of Zim is

i[f Zm Z I M ( ( n ) ) e S Z (d z n ) ( 6 9 )

where n=l,2 and n=l represents the condition of a jammed hop

and n=2 represents the condition of an unjammed hop. The

Laplace transform of interest is obtained by substituting (40)

into (69)
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(a 2Z fn) a 
2 (n)

f Xo___-___imn ) 2(n) x ) SZA dZim (70)
20 e ir 2 0n ) 2 ( 2 (n) 2 (n)

-a 2 im 2(n) a -Z2Oi
o x e1 o n e 2 a 2 (n) T o ( 2 (n),,, aw zi . ) Z (n ) "

20i 2 ( n )  ()im

Equation (70) is evaluated by defining

B= J-aim(n) ax (71)a im 2 (n) "

and

C2 S x2 (72)
2 (n) 

(

and making th aubstitutions u2=Zim and Io(x)=Jo(jx), and using

the inteo-"l (from [10])

B
2

fo c2u2 ___(73)

e- u J o (Bu) du= 1-e ,20, 2C2

The Laplace transform of interest is

0 2 _ im2 (n) s

FZ]n (s) - - e A--- (74 )
A W

where

A' ) =2aoi 2 (n) s+o 2(75)

[Ref. 4 :p. 6]. The probability density function of Z, is

determined by using the fact that convolution in the time

domain translates to multiplication in the s domain:
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F7  (S) =F2 ) (S) (s) L-1 (76)

The probability density function of Zi is given by

fz (zi) = - [ (Fz, (s) ) 1 (Ezr (s) ) L] (77)

where L is the number of hops per symbol, 1 is the number of

jammed hops, and 9" is the inverse Laplace transform

operation. In general, (77) cannot be evaluated in closed form

and numerical subroutines are used to determine the inverse

Laplace transform at each point.

For the case of all hops jammed or unjammed, (77) reduces

to

f z n) (z ."') )  = - [(f _ .iz ) (s)) ]
im (78)

(F, , (s) )Le Szi" ds.

The function in the s domain in (78) is obtained by raising

(74) to the L power

2 (n)ai1 LS

F[Ezll (S)]IL=( Oxz  Le  2 a 2()S-Q (79)
Zim ~ 2(im 2 n S+Ox 2

Equation (79) is factored as
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[Fz (s) ] L ( )Le 2o,.2

2 0iramn 1 in) f(n)

= o./(4oj,D) (80)
o22

x
2  S+ G"

(S+ X )Le 2°i2(n)
2 a in 2 (n)

The needed inverse Laplace transform is obtained by combining

the transform property that

f-' [F(s+a) ] =e-azf (z) (81)

the inverse Laplace transform relation (from [11])

b L-1

L) 2 (82)

with the substitutions

a- o 2  (83)

and

La 2 In)a 2II= X o (84)
43ima4 (n)

After simplifying, the resulting closed form expression for

this special case is

L-1
2 2Ox 2 In (85)

f n) (z n) = 2 - 20n) 2In '-1 (Ox Z n)

where IL-1 is the modified Bessel function of order L-1 and
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2 (n)(n ) = a i m _ _ ( 8
=L (86)

ox 2

[Ref. 4:p. 7].

C. NUMERICAL INTEGRATION TECHNIQUES

A double numerical integration is needed to evaluate (48),

which can be very time consuming. By taking advantage of the

properties of the Laplace transform, the double numerical

integration is reduced to a single numerical integration. The

amount of computing time needed is greatly reduced since

P -i f (z,) dz =Sf-1[ Fz' (s)]1 (87)

and (76) can be divided by s as needed to carry out the inner

numerical integration.

The use of the integration technique illustrated in (87)

is the primary reason a union bound solution is calculated

instead of an exact solution. As seen in (44), the union bound

solution requires implementation of (87) only once. The exact

solution, as seen in (51), requires using (87) M-1 times

since, for the DFT based receiver, the bins that ideally

contain no signal will in general have different probability

density functions due to Doppler shift and non-uniform

windowing. Although using (87) to integrate the probability

density function significantly reduces computing time compared

to direct numerical integration, the amount of computing
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resources needed to calculate the exact solution is much more

than that needed to determine the union bound solution. The

fact that only a limited amount of these resources was

available to generate results justified the decision to

evaluate the union bound solution.

The rmaining integration is accomplished using Simpson's

rule, which is chosen because of its accuracy as compared with

the trapezoidal rule. Figure 3.1 shows how Simpson's rule is

applied to integration. By dividing the z-axis into equally

spaced elements and evaluating the function at each of these

points a close approximation of the integral can be obtained

through the relation

f Nf(z) dz Z (f z I ) +4f (z 2 ) +2f(z3) +4f(z4 ) +2f(z.) (88)

1 .+4f(zN_-) +f(zN))

where an odd number of points must be used (Ref. 12:p. 350].

By choosing an endpoint, varying the spacing between points,

and repeatedly evaluating the integral until no difference is

observed between successive iterations, an optimal Az is

obtained. A close approximation to the semi-infinite integral

is obtained by using that value of Az while increasing the

value of the upper limit on the integral until no difference

is detected between successive iterations.
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Figure 3.1: Example of dividing a function into equally
spaced segments suitable for use with Simpson's rule.
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IV. RESULTS

A. PREVIOUS RESULTS

Studies concerning the effects of non-uniform windowing on

a DFT based receiver in the presence of a Doppler shifted

signal have been performed and documented in [1] and [2]. Each

study draws conclusions concerning the effectiveness of the

DFT based receiver under different circumstances. The results

of these studies are included in order to better understand

the conclusions of this thesis.

Reference [1] studies the effects of non-uniform windowing

on a DFT based receiver in a nonfading channel with a Doppler

shifted signal, where the probability of bit error as a

function of the signal-to-noise ratio is obtained. It is

demonstrated that using a non-uniform window (specifically, a

Hamming window) results in a degradation of performance as

compared with the performance of a uniform window for the

cases of little of no Doppler shift on the incoming signal.

However, performance enhancement is obtained as Doppler shift

increases. For the case of M=8, a Doppler shift of e=.33 is

sufficient to warrant the use of non-uniform windowing.

Furthermore, the performance improvement increases as the

amount of Doppler shift in the signal increases. [Ref. 1: pp.

2017-20181
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The effects of a Rician fading channel on the DFT based

receiver are investigated in (2]. Another parameter for

analysis is the direct-to-diffuse ratio discussed in the

previous chapter. In a manner similar to that developed in

[1], data is generated relating the probability of bit error

to the signal-to-noise ratio for different direct-to-diffuse

ratios. For large direct-to-diffuse ratios (i.e., conditions

corresponding to those studied in [1]), the results correlate

well. However, as the direct-to-diffuse ratio is decreased,

the non-uniform window gives better performance than a

rectangular window only when the Doppler shift decreases. The

presence of a strong diffuse signal, as illustrated by a small

direct-to-diffuse ratio, limits the benefits of using a

rectangular window.

B. EFFECTS OF FREQUENCY-HOPPING AND PARTIAL-BAND INTERFERENCE

Graphs of the worst case probability of bit error as a

function of signal-to-jamming noise ratio for fixed signal-to-

thermal noise ratios are constructed for one, two, three, and

four hops per symbol. These results are obtained by

numerically evaluating (40), (48), and (49) for values of y

ranging from 1.0 to 0.001 and retaining the worst case

performance for each value of EbIN. These results are plotted

in Figs. 4.1 through 4.4. The signal-to-noise ratio, direct to

diffuse ratio, and the modulation order are chosen to enable

direct comparisons with the results obtained in [4] which
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Figure 4.2: Worst case probability of bit error versus

signal-to- jamming noise ratio for L=2, M=4, direct-to-
diftuse ratio=10, and SNR=13.35 dB.

39



CO)

cti

CO1

oJ 0

L I I I I I I H III I I 1 1 11 I

oai SO)q
Fiue .: Wrtcs rbblt fbterrvru
sinl-o amn os ai o =,M4 d irc-o
difs a i=0 n N=33 B

40V



CO
10

U

00

0 0

41\



analyzes a conventional (non-DFT) noise-normalized MFSK

receiver with quadratic detection. The results obtained here

for the case of no Doppler shift (a=O) and a rectangular

window should be similar to those obtained in [4].

Differences in the results obtained in [4] and those

obtained in this study are primarily due to the facts that the

equivalent system bandwidths used in [4] and this thesis are

different and the results in [4] are exact while the results

in this study represent a union bound. The equivalent system

bandwidth used in [4] is chosen to be minimal while the

equivalent system bandwidth used in this work is chosen to

enable increased frequency spacing between the DFT output bins

as well as to allow comparisons to be made with the results in

[1] and [2]. From this, it is expected that the data generated

for this thesis will predict slightly worse performance than

that predicted in [4]. This is observed in all cases.

Just as reported in [4], the performance of the DFT based

communications system is enhanced as the number of frequency-

hops per symbol is increased. This is especially true for the

cases of little or no Doppler shift. For cases of large

Doppler shift (i.e., c=0.5), the performance of the receiver

is slightly poorer as the hop rate is increased when non-

uniform windowing is used. The error introduced by self-

induced crosstalk overcomes the benefits usually associated

with fast frequency-hopping. This is clearly seen in Fig. 4.1

and Fig. 4.4 for the case of a rectangular window and c=0.5.
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For Eb/NJ= 41.O dB, Pb=4.41x10-2 for a hop rate of one hop per

symbol, and Pb=6.65xl0-2 for a hop rate of four hops per

symbol. The use of a Hamming window in this situation improves

receiver performance as the number of hops per symbol

increases, but the benefits are small compared to the

complexities needed to implement a fast frequency-hopped

receiver.

For the case of slow frequency-hopping, the results in

Fig. 4.1 approach those reported in [2) as Eb/NJ becomes very

large. This is expected because the decision statistic

consists only of one component due to the fact that the

carrier frequency is changed once per symbol. Furthermore,

receiver performance degrades as either the jamming power or

the Doppler shift increases. As reported in [1] and [21, the

performance of the Hamming window is worse than that for a

rectangular window for small Doppler shifts, but outperforms

the rectangular window for large Doppler shifts. The value of

e at which the use of a Hamming window gives better

performance than the use of a rectangular window (the

crossover fractional frequency offset) is a function of the

amount of jamming power at the receiver. At Eb/NJ=l.O dB, for

example, with a rectangular window, Pb=0.413 with E=O and

Pb=0.687 with c=0.5; while, with a Hamming window, Pb=0.524

with E=O and Pb=0.668 with c=0.5. However, at Eb/Nj= 4 1.O dB,

with a rectangular window, Pb=4.59x10-4 with v=O and

Pb=4.41x10-2 with E=0.5; while, with a Hamming window,
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Pb=1.26x10-3 with a=O and Pb=7.87x10-3 with e=0.5. For large

Doppler shifts, the use of a Hamming window clearly improves

receiver performance over a broad range of Eb/Nj.

This same phenomena exists for the cases of two, three,

and four hops per symbol. In these cases, however, the larger

hop rates have little effect on the value of the crossover

fractional frequency offset. This is illustrated in Figs. 4.5

through 4.8 which plot the worst case probability of bit error

as a function of the fractional frequency offset for

Eb/NJ=1 6 .0 dB and L=1,2,3 and 4. These results are summarized

in Fig. 4.9, which plots the crossover fractional frequency

offset as a function of the hop rate for various values of

Eb/NJ. As can be seen, the values of the crossover fractional

frequency offset remain in a small band for each value of

Eb INj, and increase as the amount of jamming power at the

receiver increases.

From Fig. 4.9, it can be seen that the crossover

fractional frequency offset does not follow a smooth curve as

the hop rate is varied. In viewing these curves, it must be

remembered that the results in Figs. 4.1 through 4.4 represent

the worst case performances of union bound solutions. These

worst case results are obtained by varying the value of the

fraction of spectrum jammed (y) and retaining only the worst

case performance. The value of y giving worst case performance

at one hop rate is not generally the same value at a different

hop rate. The fact that only a representative number of
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discrete values of y are used to approximate the continuous

range of possible y's contributes to this situation.
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V. CONCLUSIONS AND RECOMMENDATIONS

As the frequency-hop rate of the DFT based communications

system with noise-normalization increases, receiver

performance improves in the absence of large Doppler shifts.

However, when large Doppler shifts exist, the errors

introduced as a result of self-induced crosstalk counteract

any benefits gained from the use of fast frequency-hopping.

The advantages gained by using a non-uniform window in the

presence of large Doppler shifts improve the situation, but

not enough to warrant the added hardware complexities inherent

to the application of fast frequency-hopped spread spectrum.

The amount of Doppler shift necessary to warrant the use

of a non-uniform window is primarily a function of the jamming

noise power spectral density. Holding all else constant, as N

increases, the amount of Doppler shift necessary to justify

the use of a non-uniform window increases. At very small

values of EbIN the use of a non-uniform window results in

degraded performance for all but the most extreme Doppler

shifts. The performance degradation resulting from using a

non-uniform window in a situation with little Doppler shift,

however, is small compared to the performance enhancement

gained by using a non-uniform window when large Doppler shifts

exist. In general, in the absence of all information regarding
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the nature of the received signal, the use of a non-uniform

window is preferred in all situations.

For all but the most severe conditions of Doppler shift

and jamming power, the receiver studied in this thesis

provides reliable communications through the use of fast

frequency-hopped spread spectrum. Communications reliability

does not come without a price. The complexities involved in

implementing a fast frequency-hopped spread spectrum system

are enormous and are not worth the benefits in all situations.

As an example, in order to keep the same number of samples per

frequency-hop for the DFT, the total symbol duration time

becomes a linear function of the hop rate. In this thesis the

hop time is determined to be equal to one seconu. For the case

of one frequency-hop per symbol, this translates to a symbol

duration time of one second, but for the case of L frequency

hops per symbol, this translates to a symbol duration time of

L seconds. Thus, a faster frequency-hop rate translates to

slower, but in many situations, more reliable communications.

Despite its drawbacks, the use of the DFT based receiver

may be superior in situations where the content of the message

is more valuable than the speed of delivery. By employing the

DFT based receiver with fast-frequency hopping, a system can

be developed which has the potential to deliver reliable

communications with considerable anti-jam protection.

Situations relying on this type of communications protection

are common in the military environment.
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In order to gain deeper insight into the relationships

between the fractional frequency offset, the modulation order,

the hop rate, and the signal energy-to-jamming noise power

spectral density ratio, further study should be conducted.

This study should emphasize the changes in the crossover

fractional frequency offset observed while varying the key

parameters listed above. Also, the calculation of the exact

solution is possible, and should be utilized in any further

study. Due to limited computational resources, this was not

possible in this thesis.

Finally, the work presented here is theoretical in nature

and should be tested with actual hardware. The assumptions

made in this analysis were selected to ease the burden of

computational effort needed to solve the problem. They may not

correspond to actual conditions needed for optimal

communications in a real world system. Only building this

receiver and testing it under realistic conditions will prove

or disprove the usefulness of the DFT based, noise-normalized

receiver.
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